
Rocket U2 Clients and APIs

Administrative Server Settings and Logging for
U2 Clients

Version 5.3.0

October 2022
UCC-530-SUPP-UG-01

2

Notices
Edition

Publication date: October 2022
Book number: UCC-530-SUPP-UG-01
Product version: Version 5.3.0

Copyright
© Rocket Software, Inc. or its affiliates 1988–2022. All Rights Reserved.

Trademarks

Rocket is a registered trademark of Rocket Software, Inc. For a list of Rocket registered trademarks go
to: www.rocketsoftware.com/about/legal. All other products or services mentioned in this document
may be covered by the trademarks, service marks, or product names of their respective owners.

Examples

This information might contain examples of data and reports. The examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any similarity to
the names and addresses used by an actual business enterprise is entirely coincidental.

License agreement

This software and the associated documentation are proprietary and confidential to Rocket Software,
Inc. or its affiliates, are furnished under license, and may be used and copied only in accordance with
the terms of such license.

Note: This product may contain encryption technology. Many countries prohibit or restrict the
use, import, or export of encryption technologies, and current use, import, and export regulations
should be followed when exporting this product.

http://www.rocketsoftware.com/about/legal

3

Corporate information
Rocket Software, Inc. develops enterprise infrastructure products in four key areas: storage, networks,
and compliance; database servers and tools; business information and analytics; and application
development, integration, and modernization.

Website: www.rocketsoftware.com

Rocket Global Headquarters
77 4th Avenue, Suite 100
Waltham, MA 02451-1468
USA

To contact Rocket Software by telephone for any reason, including obtaining pre-sales information
and technical support, use one of the following telephone numbers.

Country Toll-free telephone number

United States 1-855-577-4323
Australia 1-800-823-405
Belgium 0800-266-65
Canada 1-855-577-4323
China 400-120-9242
France 08-05-08-05-62
Germany 0800-180-0882
Italy 800-878-295
Japan 0800-170-5464
Netherlands 0-800-022-2961
New Zealand 0800-003210
South Africa 0-800-980-818
United Kingdom 0800-520-0439

Contacting Technical Support

The Rocket Community is the primary method of obtaining support. If you have current support and
maintenance agreements with Rocket Software, you can access the Rocket Community and report
a problem, download an update, or read answers to FAQs. To log in to the Rocket Community or to
request a Rocket Community account, go to www.rocketsoftware.com/support.

In addition to using the Rocket Community to obtain support, you can use one of the telephone
numbers that are listed above or send an email to support@rocketsoftware.com.

http://www.rocketsoftware.com
http://www.rocketsoftware.com/support
mailto:support@rocketsoftware.com

4

Contents

Notices... 2

Corporate information... 3

Chapter 1: Introduction..6
UCI (UniVerse only)...6
InterCall... 6
UniObjects for Java.. 6
JDBC Driver for UniVerse and UniData... 7
Visual Schema Generator (UniData only)... 7
U2 ODBC.. 7
UniObjects for .NET...7
U2 Toolkit for .NET... 7
U2 Client build information... 8

Chapter 2: Maintaining the UniRPC...9
System requirements... 9
How the UniRPC works.. 10
Maintaining the UniRPC... 10

UniRPC maintenance on UNIX UniVerse systems.. 10
Defining the UniRPC port number (UNIX UniVerse Only)...11
Maintaining the hosts file (UniVerse Only)..12
Adding a node...12
Modifying a node.. 12
Removing a node..12
Starting the UniRPC on Windows platforms...12
From the Control Panel..13
From the UniVerse Control Panel..13
At the MS-DOS prompt...13
Stopping the UniRPC on Windows platforms...13
From the Control Panel..13
From the UniVerse Control Panel..14
At the MS-DOS prompt...14
Starting the UniRPC daemon on UNIX UniVerse systems.. 14
Starting the UniRPC daemon on UNIX UniData systems... 14
Stopping the UniRPC daemon on UNIX UniVerse systems.. 14
Stopping the UniRPC daemon on UNIX UniData systems... 15

UniRPC maintenance on U2 servers... 15
About the unirpcservices file... 15

UniVerse systems.. 16
UniData systems... 16

UNIX UniRPC daemon debugging log... 16
Windows UniRPC service debugging log...16

Chapter 3: Accessing UniData Accounts... 18
Running concurrent UniData versions.. 18
Running UCI, UniData ODBC, or UniOLEDB concurrently..18
Running InterCall, UniObjects, or UniObjects for Java concurrently..19
Tracing events for U2 ODBC, JDBC, or U2 Toolkit UCI connection server.. 19
Turning on the UniObjects server, UOJ, or U2 Toolkit native connection log based on specific service

name.. 20

Chapter 4: Accessing UniVerse Accounts.. 22
Tracing events for U2 ODBC, JDBC, or U2 Toolkit UCI connection server.. 22

Contents

5

Turning on the UniData UniObjects server, UOJ, or U2 Toolkit native connection log based on specific
service name... 22

Turning on the UniVerse UniObjects server, UOJ, or U2 Toolkit native connection log based on specific
service name... 24

Chapter 5: Device licensing..26
Licensing modes... 26

Session licensing...26
Device licensing.. 26

Why do I need device licensing?..27
Device licensing requirements...27

Connection types.. 27
Direct connections..27
Two-tier connections..27
Multiple-tier connections... 28
Using device subkeys... 28

Chapter 6: U2 server security control subroutine and U2 environment settings... 29
UniData and UniVerse native client connection control..29
UniData and UniVerse ODBC client connection control.. 29
U2 server environment setting.. 30
Date format change for U2 native client.. 31

Chapter 7: U2 client connection debugging log and settings... 32
U2 ODBC client logging.. 32
U2 UniObjects for Java client logging...32
U2 JDBC client logging...32
UniObjects for .NET client logging...32
U2 Toolkit for .NET client logging..33
Tracing and logging in U2 Toolkit for .NET add-ins for Visual Studio... 34

Visual Studio trace files..34

Chapter 8: U2 SSL client connection debugging log and settings.. 35
UniData and UniVerse native SSL client connection... 35
UniData and UniVerse U2 ODBC SSL client connection...35

Turning on the U2 ODBC SSL client debugging log... 36
U2 ODBC SSL Client compatibility.. 36

Chapter 9: Error Messaging..37
Database error codes... 37
UniRPC error codes.. 40
UniVerse SQL error codes.. 41
U2 ODBC error codes..44

6

Chapter 1: Introduction
The following APIs are provided for writing client application programs that connect to UniVerse and
UniData databases.

They are called common APIs because programs written in them can access data in both databases.

The Client APIs are:

▪ UCI (UniVerse only)

▪ InterCall

▪ UniObjects for Java

▪ JDBC Driver for UniVerse and UniData

▪ Visual Schema Generator (VSG) (UniData only)

▪ U2 ODBC

▪ UniObjects for .NET

▪ U2 Toolkit for .NET

UCI (UniVerse only)
UCI is a C-language API. It lets developers write UNIX and Windows client programs that use SQL
statements to access and manipulate data in UniVerse databases.

UCI is modeled on the ODBC standard as defined in the Microsoft ODBC 2.0 specification. It models
only the API side of the ODBC standard, not the driver/transport side. Unlike the standard ODBC
interface, UCI is more closely integrated with the extended relational database model used by
UniVerse, with its nested tables, transaction processing support, and so forth.

InterCall
InterCall is an open API that lets client application programs developed on UNIX or Windows systems
access data on UniVerse or UniData servers.

On UNIX systems, developers can write client programs using any tool that accesses static libraries,
typically a C compiler. On Windows platforms, developers can write client programs using any tool
that accesses DLLs, for example, Visual Basic, C, or Visual C/C++.

Note: InterCall replaces and supersedes ICI (Integrated Calling Interface).

UniObjects for Java
UniObjects for Java is an API that lets developers create Java-based applications that access UniVerse
and UniVerse databases.

UniObjects for Java, based on the UniObjects model, is a 100% Pure Java Class Library whose objects
can take full advantage of any Java-based IDE (Integrated Development Environment).

JDBC Driver for UniVerse and UniData

7

JDBC Driver for UniVerse and UniData
The JDBC driver for UniVerse and UniData is an interface to UniVerse and UniData databases from
JDBC applications.

This book is for experienced programmers and application developers who are familiar with UniVerse
and UniData, Java, JDBC, and who want to write JDBC applications that access these databases.

Note: The JDBC Driver for UniVerse and UniData does not require any configuration for UCI and
will not need an entry within the UCI configuration file.

Visual Schema Generator (UniData only)
Visual Schema Generator (VSG), or Schema API, lets you prepare your database files for desktop
access through UniData ODBC, UniData JDBC, or UniOLEDB.

This "mapping" process translates UniData nested relational data to adhere to ODBC/SQL rules. It
allows you to use your UniData files in conjunction with ODBC, JDBC, or UniOLEDB tools such as Visual
Basic, PowerBuilder, and MS Access for ODBC, or WebSphere, EJB, or any J2EE-compliant tool for
JDBC.

U2 ODBC
The U2 ODBC driver enables ODBC applications to connect to the UniData or UniVerse (U2) database
management system (DBMS).

The U2 ODBC driver is an implementation of the Microsoft ODBC Version 3.0 specification, with
limitations. Some of the functionality of the ODBC 3.0 specification are not supported due to server
side restrictions.

An ODBC application sends a connection request for a data source name (DSN) definition to the U2
ODBC driver. The driver receives the request and then establishes a connection to the U2 DBMS.

UniObjects for .NET
UniObjects for .NET is an API that lets developers create .NET-based applications that access UniVerse
and UniVerse databases.

UniObjects for .NET is fully integrated with the Microsoft environment.

Note: UniObjects for .NET is a deprecated product. It is replaced by U2 Toolkit for .NET.

U2 Toolkit for .NET
The U2 Toolkit for .NET Provider provides a comprehensive ADO.NET provider, LINQ to Entity provider,
and the native UniObjects for .NET API for the U2 databases. Use Microsoft Visual Studio 2010 or later,
to build applications and take advantage of the powerful Microsoft .NET Framework and CLR.

The U2 Toolkit for .NET Developers allows you to easily design U2 applications within Visual Studio.
The U2 Toolkit for .NET works with both 32-bit and 64-bit Windows operating systems.

U2 Toolkit for .NET is made up of three primary components:

Chapter 1: Introduction

8

▪ U2 Toolkit for .NET Provider (ADO.NET Provider)

▪ U2 Entity Data Provider for .NET (LINQ to Entity)

▪ U2 Toolkit for .NET Developer (Visual Studio Add-ins for Server Explorer Integration)

Developers can use U2 Toolkit for .NET to take advantage of server-based capabilities, such as:

▪ Automatic Data Encryption (ADE)

▪ Secure Sockets Layer (SSL)

▪ Connection Pooling

▪ TOXML ('FillWithTOXML Method' in the on-line documentation)

▪ TOJSON ('ExecuteJson Method' in the on-line documentation)

U2 users can find more information in the U2 Toolkit for .NET manual.

U2 Client build information
Following is the build information for the 5.2.0 U2 Clients.

▪ UniObjects for .NET Framework 4.5 is built with Visual Studio 2013

▪ All other products are built with Visual Studio 2010 and Java 1.8

9

Chapter 2: Maintaining the UniRPC
The UniRPC lets UniVerse/UniData systems communicate with remote UNIX or Windows systems. The
communicating systems must use TCP/IP networking software to make connections.

In this chapter the terms local and remote refer to client and server programs or systems. However,
because client programs can connect to server programs running on the same computer, remote does
not necessarily imply that the server is on another physical computer system.

Note: On UNIX UniData 7.3 or early versions, udt or udapi_slave processes load the libodbc.xx
dynamic library based on the /.udlibs73 link setting, similar to:

 ldd udt
/.udlibs73/libodbc.so (0xf7f4c000)

In UniVerse 11.3.1 and UniData 8.1 or higher, it might load a different libodbc.xx based on the
$LD_LIBRARY_PATH variable setting, similar to:

[root@dentr64 bin]# ldd udt
libodbc.so => /usr/local/lib/libodbc.so (0x00007f6cef337000)

When UniData BCI and EDA users do not set the LD_LIBRARY_PATH environment variables
correctly, it will not work with their ODBC connection.

In UniVerse 11.3.1 and UniData 8.1 or higher, we suggest setting the LIBPATH or LD_LIBRARY_PATH
environment variable.

This chapter describes:

▪ The UniRPC daemon (on UNIX servers)

▪ The UniRPC service (on Windows servers)

▪ The contents of the unirpcservices file

The UniRPC on UniVerse servers requires little maintenance, other than starting and stopping the
UniRPC daemon or service. On UniVerse servers, you can also do the following:

▪ Change the port number

▪ Add entries to a UNIX hosts file

▪ UNIX UniRPC daemon debugging log

▪ Windows UniRPC Service debugging log

System requirements
Before installing layered or third-party products that use the UniRPC, such as the UniDK, UniOLEDB,
the JDBC Driver for UniVerse and UniData, or XAdmin, you must install and configure TCP/IP using the
instructions supplied by the TCP/IP facility vendor.

On UNIX UniVerse systems, you should then identify the systems to be networked with the database
by defining them in the /etc/hosts file. See Maintaining the hosts file (UniVerse Only), on page 12 for
more information.

Chapter 2: Maintaining the UniRPC

10

How the UniRPC works
The UniRPC daemon unirpcd (or the UniRPC service unirpc) waits for a request from a client system to
connect to a server process.

When it receives a connection request, it checks the unirpcservices files to verify that the client
system is allowed to request a particular service. If it can, the UniRPC starts the requested service,
then returns to the listening state. Each client process connects to its own server process. Each server
process uses the same amount of system resources as a local database user.

Maintaining the UniRPC
This section describes the following:

▪ How to change the UniRPC port number (UNIX UniVerse only)

▪ How to maintain a UNIX server’s hosts file (UNIX UniVerse only)

▪ How to start and stop the UniRPC daemon (unirpcd)

UniRPC maintenance on UNIX UniVerse systems

Use XAdmin to:

▪ Define the UniRPC port number

▪ Maintain the hosts file on a UNIX server

Choose Network Services from the XAdmin menu. The Network Services window appears, as shown
in the following example:

Defining the UniRPC port number (UNIX UniVerse Only)

11

 This window has the following components:

▪ Port # field. The current port number for the UniRPC daemon.

▪ Hosts list. Displays the machine name and IP address for each node in the /etc/hosts file.

Note: If you are using the Network Information Services (NIS, also known as Yellow Pages), you do
not need to use the /etc/hosts file to define, change, and delete network nodes. See the UNIX
networking documentation provided with your system for more information.

Defining the UniRPC port number (UNIX UniVerse Only)

Before you can use the UniRPC, you must specify the number of the port that the UniRPC is to use. You
specify the port number on the client and the server systems. If you specify a port number other than
the default, it must be the same on all systems that communicate via the UniRPC.

The current UniRPC daemon port number is displayed in the Port # field in the Network Services
window. To change the number, do the following:

1. Click Change.
The Change Port Number dialog box appears.

2. Enter a new number in the Enter new Port number field.
3. Click OK.

The new port number is saved in the UNIX/etc/services file and the Network
Services window is updated with the new setting.

To use the new port number, you must restart the UniRPC daemon (see Starting the UniRPC daemon
on UNIX UniVerse systems, on page 14)

Chapter 2: Maintaining the UniRPC

12

Maintaining the hosts file (UniVerse Only)

Use the Network Services option of XAdmin to add, modify, and remove nodes in the hosts file. These
tasks are performed from the Network Services window.

Adding a node
To add a new node to the hosts file:

1. Click Add on the Network Services window.
The Add Node dialog box appears.

2. Enter the node name in the Machine Name field.
3. Enter the node address in the IP Address field.
4. Click OK.

The new node’s machine name and IP address are checked against existing entries in the
hosts file. If the new node matches an existing entry, a message box appears. You must
acknowledge the message before you can enter alternative values. If the new node details are
unique, the new node definition is added to the hosts file and the Network Services window is
updated.

Modifying a node
To modify the name or IP address of an existing entry in the hosts file:

1. Choose the node to modify by doing one of the following:

▪ Double-click the node in the Hosts list.

▪ Choose the node and click Modify.

The Modify Node dialog box appears.

2. Edit the entries in the Machine Name and IP Address fields.
3. Click OK.

The node’s machine name and IP address are checked against existing entries in the hosts file.
If the node details match an existing entry, a message box appears. You must acknowledge
the message before you can enter alternative values. If the node details are unique, the node
definition is added to the hosts file and the Network Services window is updated.

Removing a node
To remove a node definition from the hosts file:

1. Select the node from the Hosts list.
2. Click Remove.

A message box appears.
3. Click Yes. The node definition is removed from the hosts file and the Network Services window

is updated.

Starting the UniRPC on Windows platforms

On UniVerse or UniData systems you cannot use Xadmin to start the UniRPC daemon because it uses
the UniRPC daemon to connect to the UniVerse or UniData server. On Windows platforms, you can
start the UniRPC daemon or service in one of three ways:

▪ From the Windows Control Panel

From the Control Panel

13

▪ From the UniVerse Control Panel

▪ At the MS-DOS prompt

From the Control Panel
1. Double-click the Services icon.
2. Scroll down the list of services until you find three entries for UniVerse: UniVerse Resource

Service, UniRPC Service, and UniVerse Telnet Service.
3. Choose UniRPC Service, then choose Start.
4. Click Startup, then click Automatic.

This ensures that UniVerse starts automatically when the server is rebooted.

From the UniVerse Control Panel
1. Choose Start > Programs > Rocket U2 > UniVerse Control.
2. Click the Start All Services button to start all UniVerse services.

At the MS-DOS prompt
Enter the following command:
D:\users>net start unirpc

The system reports the name of the service it is starting and whether the startup is successful.

Note: The UniVerse services are started automatically when the operating system is loaded unless
you clear the automatic startup boxes during UniVerse installation.

Stopping the UniRPC on Windows platforms

You can shut down the UniRPC daemon or service in one of three ways:

▪ From the Windows Control Panel

▪ From the UniVerse Control Panel

▪ At the MS-DOS prompt

Note: If users are connected to the services when they are shut down, the users do not lose their
connections; the connections remain active until the users terminate them. However, it is not
possible for new users to connect to UniVerse. If you want to do a complete shutdown of UniVerse
to restart the services, be sure that all connections are terminated first.

From the Control Panel
1. Double-click the Services icon.
2. Scroll down the list of services until you find three entries for UniVerse:

▪ UniVerse Resource Service

▪ UniRPC Service

▪ UniVerse Telnet Service
3. Choose UniRPC Service, then choose Stop.
4. Click OK.

The UniRPC daemon or service is shut down.

Chapter 2: Maintaining the UniRPC

14

From the UniVerse Control Panel
1. Choose Start > Programs > Rocket U2 > UniVerse Control.
2. Click Stop All Services to stop all UniVerse services. Wait for all services to stop.
3. Click OK to exit the UniVerse Control Panel.

All four services are shut down.

At the MS-DOS prompt
You can shut down the UniRPC daemon or service in one of three ways:

1. Enter the following command at the MS-DOS prompt:
D:\users>net stop unirpc

A message appears prompting you to confirm that you want to stop the UniRPC.
2. Enter Y to stop the UniRPC daemon or service.

Starting the UniRPC daemon on UNIX UniVerse systems

Use the UniVerse System Administration menus on the UniVerse server to start the UniRPC daemon.
See Administering UniVerse on Windows and UNIX Platforms for more information.

1. Choose Rpc administration from the Package menu, then choose Start the rpc daemon.
2. At the prompt, do one of the following to handle any error messages.

▪ Enter the name of the file to send all error and system messages to.

▪ Enter a space to display messages on your screen.

▪ Press Enter if you do not want to display or save message.

Once you start the UniRPC daemon, it automatically restarts whenever you boot UniVerse.

3. At the next prompt, click Yes to start the UniRPC daemon or No to return to the Rpc
administration menu.

Note: The file that receives all error and system messages can grow unchecked unless you
monitor it periodically.

Starting the UniRPC daemon on UNIX UniData systems

Enter the following command:

$UDTBIN/startunirpcd

Stopping the UniRPC daemon on UNIX UniVerse systems

Use the UniVerse System Administration menus on the UniVerse server to stop the UniRPC daemon.
See Administering UniVerse on Windows and UNIX Platforms for more information.

1. Choose Rpc administration from the Package menu, then choose Halt the rpc daemon.
2. At the next prompt, click Yes to stop the UniRPC daemon or No to return to the Rpc

administration menu.

Note: Stopping the UniRPC daemon does not interrupt active UniRPC processes.

Stopping the UniRPC daemon on UNIX UniData systems

15

Stopping the UniRPC daemon on UNIX UniData systems

Enter the following command:

$UDTBIN/stopunirpcd

UniRPC maintenance on U2 servers

On UniVerse servers, UniRPC maintenance is minimal. You are not required to change the port number
of the UniRPC, and there is no need to maintain a hosts file.

On UniiData servers, Use the stopunirpcd or stopud command to stop the UniRPC daemon or
service. Use the startunirpcd or startud command to start the UniRPC.

About the unirpcservices file
Each process that uses the UniRPC automatically configures the unirpcservices file when it first starts.
If no unirpcservices file exists, it is created in the unishared directory.

▪ On UNIX systems the default location of this file is /usr/unishared/unirpc.

▪ On Windows platforms the default location is <drive>:\u2\unishared\unirpc.

To determine the location of the unirpcservices file on your system, do the following:

▪ On UNIX systems, execute the command:
$ cat /.unishared

▪ On Windows platforms, find the registry entry under the subkey \HKEY_LOCAL_MACHINE
\SOFTWARE\Rocket Software\unishared.

When a client system requests a connection to a service on a server system, the UniRPC daemon
(unirpcd) on the server uses the unirpcservices file to verify that the client system can start the
requested service.

The UniRPC software uses field 3 of the unirpcservices file to verify that a machine making a
request for a service is allowed to do so.

The following table lists the fields in the unirpcservices file:

Field Contents

1 The name of the UniRPC service (for example, uvserver).
2 The full path of the service engine executed by the UniRPC daemon.
3 The names of nodes allowed to execute this service. This field is multivalued, with

values separated by commas (no spaces). If the field contains * (asterisk), all hosts
defined in /etc/hosts can execute this service.

4 The network transport mechanism for the service (TCP/IP).
5 Reserved for future use.
6 The value (in seconds) specifying how long an open connection can be idle before

automatic closure from the remote connection. The default is 3600, or 60 minutes.

Chapter 2: Maintaining the UniRPC

16

UniVerse systems

On UniVerse systems,the unirpcservices file might contain entries such as the following:

uvnet /usr/uv/bin/uvnetd host1,host2,host3 TCP/IP 3 3600
uvdrsrv /usr/uv/bin/uvdrsrvd * TCP/IP 0 3600
uvcs /usr/uv/bin/uvapi_server * TCP/IP 0 3600
uvfilefix /usr/uv/bin/uvfilefix_server * TCP/IP 0 3600
uvserver /usr/uv/bin/uvsrvd * TCP/IP 0 3600

The version of uv.rc shipped with UniVerse systems (/usr/uv/sample/uv.rc) contains commands
that:

▪ Check for the existence of the unirpcservices file

▪ Verify that services are defined in it

▪ Start the UniRPC daemon if the file contains services

The UniRPC daemon is executed as part of the UniVerse reboot procedure.

UniData systems

On UniData systems the unirpcservices file might contain:

udcs /usr/ud81/bin/udapi_server * TCP/IP 0 3600
udserver /usr/ud81/bin/udsrvd * TCP/IP 0 3600

UNIX UniRPC daemon debugging log
Start the unirpcd daemon with debugging mode in a UNIX environment.

Follow these steps:

1. Connect to the UNIX server as the root user.
2. Use the cat /.unishared command to find the unishared folder.
3. Change directory (cd) to the unishared folder.
4. Change directory (cd) to the unirpc folder.
5. Run the following commands:

./unirpcd -d9 -timeout3 > /tmp/unirpcd.log 2>&1 &

where -d9 is debug level 9. Another option is -d1 to reduce the unirpcd daemon log size, and
where -timeout3 sets the 3 seconds timeout to ignore a new client request if the packet is
unknown.

Windows UniRPC service debugging log
In the Windows Services menu, restart the UniRPC Service using the Start parameters with the -
d9 option. It creates a unirpcd.log file in the system32 directory by default. The log file can be
specified at the specific output folder. The Start parameters setting will not be saved to the service
properties, and it will not create the unirpcd debug log automatically when you reboot the machine.

Windows UniRPC service debugging log

17

The following illustrates how to start the UniRPC service with debug -d9 option and new log file
created in the c:\temp folder:

Note: You must click on the Start button instead of the OK button to create the log file.

18

Chapter 3: Accessing UniData Accounts
UniData databases are organized into accounts. A consumer connects to a UniData account and can
access the files there. You optionally can define the account as a database in the ud_database
file on the server. You can also include the account path or database name in the UCI data source
definition in the UCI configuration file.

For information about setting up the UCI Configuration file, see the UCI Configuration Editor
documentation.

You can also specify the account path or database name each time you try to connect to the account.
In this case you need not include the account path or database name in the UCI configuration file.
When you try to connect, you are prompted to specify either the full path to the account or the
database name.

If you want to access an account that has a UDTHOME directory different from the default UDTHOME
directory, you must include a definition for that account in the ud_database file on the server.
On UNIX systems this file is located in the /usr/ud81/include path. On Windows platforms it is
located in \udthome\include. You can find the path for udthome by looking in the registry under
HKEY_LOCAL_MACHINE\SOFTWARE\Rocket Software\UniData\8.1. Use any text editor to
modify the ud_database file.

To determine your default UniData home directory, use the UNIX env command. Output from this
command includes the default setting for the UDTHOME environment variable.

The following Windows example shows an entry in the ud_database file for a database named
dbase2:

DATABASE=dbase2
UDTHOME=d:\disk2\test81
UDTACCT=d:\disk2\test81\testacct
TRACE_LEVEL=0

In the ud_database file entry the UDTHOME parameter is optional. You should include it only when
the UDTHOME directory is different from the default UDTHOME directory.

Note: The account name defined in the UD.ACCOUNT file is not used by the UniData client driver.

Running concurrent UniData versions
When you install UniData 8.1 on a machine where 7.3 was previously installed, the unirpcservices file
is overwritten with UniData 8.1 information. If you want to run UniData 7.3 concurrently with 8.1, you
must edit certain files to enter the UniVerse 7.3 or 8.1 definitions.

Running UCI, UniData ODBC, or UniOLEDB concurrently
If you are running UCI, UniData ODBC, or UniOLEDB with concurrent versions of UniData, you must
edit the unirpcservices file and the uci.config file to define locations of executables from the previous
version of UniData.

The following example illustrates unirpcservices file entries when running UniData 7.3 concurrently
with UniData 8.1:

udserver_81 d:\u2\ud81\bin\udsrvd.exe * TCP/IP 0 3600
udserver_73 c:\u2\ud73\bin\udsrvd.exe * TCP/IP 0 3600

Running InterCall, UniObjects, or UniObjects for Java concurrently

19

Make sure the uci.config file contains an entry for the server for each version of UniData, as shown in
the following example:

<UniData81>
DBMSTYPE = UniData
network = TCP/IP
service = udserver_81
host = server1

<UniData73>
DBMSTYPE = UniData
network = TCP/IP
service = udserver_73
host = server2

Running InterCall, UniObjects, or UniObjects for Java
concurrently

If you are running InterCall, UniObjects, or UniObjects for Java with concurrent versions of UniData,
you must edit the unirpcservices file to define the location of the udapi_server executable for the
previous version you are running.

The following example illustrates unirpcservices file entries when running UniData 7.3 concurrently
with UniData 8.1:

udcs_81 C:\u2\ud81\bin\udapi_server.exe * TCP/IP 0 3600
udcs_73 C:\u2\ud73\bin\udapi_server.exe * TCP/IP 0 3600

You can now set your service name to either service defined in the unirpcservices file, for example,
udcs_72 for UniVerse 7.2 or udcs for UniVerse 7.3.

Tracing events for U2 ODBC, JDBC, or U2 Toolkit UCI
connection server

You can use the tracing feature to create logs of events between clients and the database through the
server. Logs enable support personnel to help troubleshoot problems. You can define trace levels for
database entries in the ud_database file. The following table describes the valid trace levels and the
associated information that is written to the trace log:

Trace level Description

0 Includes all fatal error information.
1 Includes all UCI functions in addition to the information provided by trace level 0.
2 Includes parameter information and column descriptions in addition to the

information provided by trace levels 0 and 1.
3 Includes data values in addition to the information provided by trace levels 0, 1, and 2.

The following UNIX example shows a tracing level setting for a database named dbase2:

DATABASE=dbase2
UDTHOME=/disk1/ud81
UDTACCT=/home/test/udtest

Chapter 3: Accessing UniData Accounts

20

TRACE_LEVEL=3

Turning on the UniObjects server, UOJ, or U2 Toolkit
native connection log based on specific service name

On a U2 server, you can turn the UniObjects server log on or off by creating a new serverdebug file
in the UniData home folder. When the server log is turned on, it might generate a lot of log files for all
of the UniObjects server processes. This makes it difficult to debug the specific application running on
the live server. On the newer U2 server versions, it is possible for U2 users to create the log files for a
specific service name.

You must provide the logging information with the service name, log level, and prefix log file name in
the existing folder name.

▪ Example 1 - serverdebug for a UNIX UniData server.

udcs 10 /tmp/udcs.log

Note: The service name must be udcs for UniData. It does not matter if the application is using
a different service name like defcs. The log level can be set to 0, 1, 3, 9, or 10.

Log level 1: All UO server and slave process connection and communication.
Log level 9: Add all client function debugging information.
Log level 10: Additional calling basic debugging information.
The log folder must exist and be writable. For this sample setting, the user must have write
permissions in the /tmp folder. The log file name will be udcs.log_<pid> in the /tmp folder.

▪ Example 2 - serverdebug for a Windows UniData server.

udcs 10 c:\temp\udcs.log

Note: The Windows user must have write permissions in the existing c:\temp folder. The
serverdebug file name should not have a .txt extension, such as serverdebug.txt.

▪ Example 3 - serverdebug log associated to a specific service name.

From UniData version 7.3.x or later, you can turn on the UniObjects server log associated to a
specific service name. The service name must also be defined in the unirpcservices file.
With the unirpcservices file defined as:

defcs C:\U2\ud73\bin\udapi_server.exe * TCP/IP 0 3600
udcs C:\U2\ud73\bin\udapi_server.exe * TCP/IP 0 3600
udcsx C:\U2\ud73\bin\udapi_server.exe * TCP/IP 0 3600
udcsy C:\U2\ud73\bin\udapi_server.exe * TCP/IP 0 3600

The resulting serverdebug logs look similar to:

udcsx 10 c:\temp\udcsx.log
udcsy 10 c:\temp\udcsy.log

Turning on the UniObjects server, UOJ, or U2 Toolkit native connection log based on specific service name

21

Note: For general udcs or defcs connections, a log file will not be created. When the UniObjects
client application is set to either the udcsx or udcsy service name, it will generate the log files in
the c:\temp folder.

▪ Example 4 - without a log path setting

udcs 10

The log file will be stored as udapiserver_<pid>.log in the tmp folder.

22

Chapter 4: Accessing UniVerse Accounts
UniVerse databases are organized into accounts. A consumer connects to a UniVerse account and can
access the files there. You optionally can define the account name in the UV.ACCOUNT file on the
server. You can also include the account path or database name in the UCI data source definition in
the UCI configuration file.

For information about setting up the UCI Configuration file, see UCI Configuration Editor .

You can also specify the account path or account name each time you try to connect to the account. In
this case you need not include the account path or account name in the UCI configuration file. When
you try to connect, you are prompted to specify either the full path to the account or the account
name.

Tracing events for U2 ODBC, JDBC, or U2 Toolkit UCI
connection server

Beginning at UniVerse version 10.1, TRACEuci provides more complete logging. The location of the log
file is created in the UVTEMP directory.

To enable UCI logging:

1. Create a text file in the UV home directory, named TRACEuci (case-sensitive), using any text
editor.

2. Leave the file empty.

To disable logging:

1. Rename or remove TRACEuci from the UV home directory.

The trace file is called UVUCIlog_<pid> and is created in the $UVTEMP directory. On UNIX,
$UVTEMP defaults to /tmp. On Windows, it defaults to c:\U2\uv\uvtemp for UV 11.1 version or
higher.

Note: The TRACEuci file must not have the .txt extension on Windows system.

Turning on the UniData UniObjects server, UOJ, or U2
Toolkit native connection log based on specific service
name

On a U2 server, you can turn the UniObjects server log on or off by creating a new serverdebug file
in the UniData home folder. When the server log is turned on, it might generate a lot of log files for all
of the UniObjects server processes. This makes it difficult to debug the specific application running on
the live server. On the newer U2 server versions, it is possible for U2 users to create the log files for a
specific service name.

You must provide the logging information with the service name, log level, and optional prefix log file
name in the existing folder name. There are several settings options for UniData UniObjects server
logging.

Turning on the UniData UniObjects server, UOJ, or U2 Toolkit native connection log based on specific service name

23

▪ Example 1 - serverdebug for a UNIX UniData server.

uvcs 10 /tmp/udcs.log

Note: The service name must be udcs for UniData. It does not matter if the application is using
a different service name like defcs. The log level can be set to 0, 1, 3, 9, or 10. When the udcs
service name is defined at the first line of serverdebug file, all UniObjects server process logs
will be created based on the udcs entry setting. It will ignore all other settings defined in the
serverdebug log file. It is the same rule applied for UNIX and Windows platform.

Log level 1: All UO server and slave process connection and communication.
Log level 9: Add all client function debugging information.
Log level 10: Additional calling basic debugging information.
The log folder must exist and be writable. For this sample setting, the user must have write
permissions in the /tmp folder. The log file name will be udcs.log_<pid> in the /tmp folder.

▪ Example 2 - serverdebug for a Windows UniData server.

udcs 10 c:\temp\udcs.log

Note: The Windows user must have write permissions in the existing c:\temp folder. The
serverdebug file name should not have a .txt extension, such as serverdebug.txt.

▪ Example 3 - serverdebug log associated to a specific service name.

From UniData version 7.3.0 or later, you can turn on the UniObjects server log associated to
a specific service name. The following setting is designed to create a log file on some specific
processes, but not all processes. The udcs entry should not be defined in the serverdebug file. The
service name must also be defined in the unirpcservices file.
With the unirpcservices file defined as:

defcs C:\U2\uv\bin\udapi_server.exe * TCP/IP 0 3600
udcs C:\U2\uv\bin\udapi_server.exe * TCP/IP 0 3600
udcsx C:\U2\uv\bin\udapi_server.exe * TCP/IP 0 3600
udcsy C:\U2\uv\bin\udapi_server.exe * TCP/IP 0 3600

The resulting serverdebug logs look similar to:

udcsx 10 c:\temp\udcsx.log
udcsy 10 c:\temp\udcsy.log

Note: For general udcs or defcs connections, a log file will not be created. When the UniObjects
client application is set to either the udcsx or udcsy service name, it will generate the log files in
the c:\temp folder.

▪ Example 4 - without a log path setting

udcs 10

The log file will be stored as udapiserver_<pid>.log in the tmp folder.

▪ Example 5 – mixed udcs and other specific service name setting (not recommended)

udcsx 10 /tmp/udcsx.log

Chapter 4: Accessing UniVerse Accounts

24

udcs 10 /tmp/udcs.log
udcsy 10 /tmp/udcsy.log

Note: The udcsx and udcs service setting will be respected, but the udcsy service setting
will be ignored due to violate the first rule (see example 1). Another option is to change the
udcs setting to the last line of serverdebug file.

udcsx 10 /tmp/udcsx.log
udcsy 10 /tmp/udcsy.log
udcs 10 /tmp/udcs.log

Note: All UniObjects server processes will create new log files. The udcsx” and udcsy service
will create different log file name based on the setting. All other service log file names will be
created based on the udcs setting.

Turning on the UniVerse UniObjects server, UOJ, or U2
Toolkit native connection log based on specific service
name

On a U2 server, you can turn the UniObjects server log on or off by creating a new serverdebug file
in the UniVerse home folder. When the server log is turned on, it might generate a lot of log files for all
of the UniObjects server processes. This makes it difficult to debug the specific application running on
the live server. On the newer U2 server versions, it is possible for U2 users to create the log files for a
specific service name.

You must provide the logging information with the service name, log level, and optional prefix log file
name in the existing folder name. There are several settings options for UniVerse UniObjects server
logging.

▪ Example 1 - serverdebug for a UNIX UniVerse server.

uvcs 10 /tmp/uvcs.log

Note: The service name must be uvcs for UniVerse. It does not matter if the application is using
a different service name like defcs. The log level can be set to 0, 1, 3, 9, or 10. When the uvcs
service name is defined at the first line of serverdebug file, all UniObjects server process logs
will be created based on the uvcs entry setting. It will ignore all other settings defined in the
serverdebug log file. It is the same rule applied for UNIX and Windows platform.

Log level 1: All UO server and slave process connection and communication.
Log level 9: Add all client function debugging information.
Log level 10: Additional calling basic debugging information.
The log folder must exist and be writable. For this sample setting, the user must have write
permissions in the /tmp folder. The log file name will be uvcs.log_<pid> in the /tmp folder.

▪ Example 2 - serverdebug for a Windows UniVerse server.

udcs 10 c:\temp\uvcs.log

Turning on the UniVerse UniObjects server, UOJ, or U2 Toolkit native connection log based on specific service name

25

Note: The Windows user must have write permissions in the existing c:\temp folder. The
serverdebug file name should not have a .txt extension, such as serverdebug.txt.

▪ Example 3 - serverdebug log associated to a specific service name.

From UniVerse version 11.2.0 on UNIX or 11.2.3 on Windows, you can turn on the UniObjects server
log associated to a specific service name. The following setting is designed to create a log file
on some specific processes, but not all processes. The uvcs entry should not be defined in the
serverdebug file. The service name must also be defined in the unirpcservices file.
With the unirpcservices file defined as:

defcs C:\U2\uv\bin\uvapi_server.exe * TCP/IP 0 3600
uvcs C:\U2\uv\bin\uvapi_server.exe * TCP/IP 0 3600
uvcsx C:\U2\uv\bin\uvapi_server.exe * TCP/IP 0 3600
uvcsy C:\U2\uv\bin\uvapi_server.exe * TCP/IP 0 3600

The resulting serverdebug logs look similar to:

uvcsx 10 c:\temp\uvcsx.log
uvcsy 10 c:\temp\uvcsy.log

Note: For general uvcs or defcs connections, a log file will not be created. When the UniObjects
client application is set to either the uvcsx or uvcsy service name, it will generate the log files in
the c:\temp folder.

▪ Example 4 - without a log path setting

uvcs 10

The log file will be stored as uvapiserver_<pid>.log in the tmp folder.

▪ Example 5 – mixed uvcs and other specific service name setting (not recommended)

uvcsx 10 /tmp/uvcsx.log
uvcs 10 /tmp/uvcs.log
uvcsy 10 /tmp/uvcsy.log

Note: Once the ‘uvcs’ entry is found in serverdebug, anything listed after it will be ignored.
However, as long as the specific entries are defined first, the individual log files will be used.
The uvcsx and uvcs service setting will be respected, but the uvcsy service setting will be
ignored due to violate the first rule (see example 1). Another option is to change the uvcs
setting to the last line of serverdebug file.

uvcsx 10 /tmp/uvcsx.log
uvcsy 10 /tmp/uvcsy.log
uvcs 10 /tmp/uvcs.log

Note: All UniObjects server processes will create new log files. The uvcsx” and uvcsy service
will create different log file name based on the setting. All other service log file names will be
created based on the uvcs setting.

26

Chapter 5: Device licensing
This chapter describes how device licensing works.

For more information about device licensing, see Administering UniVerse on Windows and UNIX
Platforms.

Licensing modes
UniVerse and UniData provide two licensing modes:

• Session licensing
Session licensing is like the licensing system used before Release 9.5 of UniVerse and Release 5.1 of
UniData. Every connection from telnet or an API, even from the same PC, consumes one database
license.

• Device licensing
Device licensing, sometimes called client-side licensing, tries to combine all remote connections
from a single device to a database server at both the database license level and the package level.

Session licensing

Session licensing is like the licensing system used before Release 9.5 of UniVerse and Release 5.1 of
UniData. Every connection from telnet or an API, even from the same PC, consumes one database
license.

On UniVerse systems, session licensing has been enhanced to include a new licensing tool, uvlictool,
that reports on the current licensing state and cleans up current licensing.

Parent topic: Licensing modes

Device licensing

Device licensing, sometimes called client-side licensing, tries to combine all remote connections from
a single device to a database server at both the database license level and the package level.

Device licensing works with the following connection types (among others):

▪ UCI

▪ InterCall

▪ UniObjects for Java

▪ JDBC

▪ U2 ODBC

▪ UniObjects for .NET

▪ U2 Toolkit for .NET

Parent topic: Licensing modes

Why do I need device licensing?

27

Why do I need device licensing?
Users accessing a database server through one or more client application programs may want to
put their licensing scheme on a one-license-per-device basis. Such applications often open multiple
connections to a database server. For example, an application might use one connection to browse,
another connection to check data, yet another connection to update the database, and so forth.

Before UniVerse Release 9.5 and UniData Release 5.1, each connection to the server consumed its
own separate license, even though only one user was using all those connections from one PC. Device
licensing lets such users consume one database license and the number of connections for which they
are licensed, up to ten, to the server from a single PC.

Device licensing requirements

Device licensing has the following requirements:

▪ Clients must run on a Windows platform.

▪ Clients must run on a LAN or TCP/IP with an Ethernet card.

Connection types
There are three ways to connect to a database server:

▪ Direct connection. This is not a client/server connection.

▪ Two-tier client/server connection.

▪ Multiple-tier client/server connection.

Each PC can have up to ten connections to the server, but not all connections from a PC can be
combined.

Direct connections

Direct connections are not really client/server connections because there is no real client. Examples of
direct connections are:

▪ Directly invoking the database on a system

▪ TTY serial line

Two-tier connections

Two-tier connections are typical client/server connections where a client application connects to
a database server either on the same machine or on a different machine. Telnet connections to the
database are an example of a two-tier connection.

Client applications running on PCs different from the database server appear to the server with unique
identifiers.

Chapter 5: Device licensing

28

Multiple-tier connections

Multiple-tier connections are client applications that connect from a PC to a database server either
through one or more different PCs, or through an application server component.

Examples of multiple-tier connections are:

▪ An HTTP server running scripts that use UniObjects or UniObjects for Java.

▪ An application that connects first to an application server either on a different PC or on the server
system. The application server connects to the database server.

Using device subkeys

Each PC that connects immediately to the database server can have up to ten connections.

Using multiple-tier connections, each PC that connects to an intermediate application component
consumes a separate license. But each of these PCs, at one or more removes from the server, can have
up to ten connections.

In order for a PC to have multiple connections to the database server and still consume only one
license, users must ensure that each PC connecting to the server through another system specify a
unique device subkey before requesting a connection to the server. This subkey is a string of up to 24
characters. All client applications on a given device that connect to one database server must use the
same unique subkey.

29

Chapter 6: U2 server security control subroutine
and U2 environment settings

This chapter describes the U2 server security subroutine and U2 server environment settings.

UniData and UniVerse native client connection control
UniData server supported the UOLOGIN security subroutine from version 5.1. However, there was
no way to limit access to UniVerse by middleware clients. Beginning at UniVerse version 11.1.1, the
UniObjects server now supports the use of the optional UOLOGIN subroutine to impose security on
client connections being made to the server.

The UOLOGIN subroutine is used to control access to the UniData database or UniVerse accounts from
middleware clients. UniObjects, UniObjects for .NET, UniObjects for Java, and InterCall check for its
existence. The subroutine supports all the capabilities available in UniData or UniVerse BASIC so it can
be tailored to meet the security needs of your specific environment.

UOLOGIN is executed when a client connection is initiated. It must be cataloged globally for UniVerse.
It can be locally or globally for UniData. If UniVerse UOLOGIN is not cataloged globally, and the
UniObjects server log is enabled, the error message *UOLOGIN is not in the CATALOG
space is written to the server debug log file. When UOLOGIN is called by a client connection, a return
value of 0 results when the subroutine fails, and error 80011 is sent to the client.

The UOLOGIN subroutine contains two arguments:

SUBROUTINE UOLOGIN(RTNVAL,APPNAME)

▪ RTNVAL - If RTNVAL is a nonzero value, the connection is allowed. If RTNVAL is 0, the connection is
not allowed and an error message is returned.

▪ APPNAME - The name of the client application trying to establish the connection.

Note: The application name is set on the client side. This is done by changing the value of
the username before establishing a connection to Your_Application_Name:username. The
additional data will be used in the UOLOGIN subroutine as the APPNAME parameter.

UniData and UniVerse ODBC client connection control
The UniData or UniVerse ODBC server provides the ability to impose security on ODBC connections
made to the server through the use of the ODBCLOGIN subroutine.

UniData supports the ODBCLOGIN security subroutine from version 7.1. The ODBCLOGIN subroutine
was added to UniVerse at the 11.2.4.4710 release or later.

UniData or UniVerse ODBC connections check for the existence of the ODBCLOGIN subroutine, and, if
found, will execute the subroutine. If the subroutine is not found, the connection is made without any
restriction.

ODBCLOGIN is a globally cataloged BASIC subroutine containing two arguments. The subroutine
can be coded in any manner desired to provide the security requirements for the site. The security
implemented will be based on the login ID of the user making the connection.

Chapter 6: U2 server security control subroutine and U2 environment settings

30

For example, you might want to prevent the connection unless the connection was being made by the
root user. The example described here accomplishes that. When the ODBCLOGIN subroutine below is
cataloged, any connection will fail unless the root user is making the connection.

If you have globally cataloged the ODBCLOGIN subroutine on the server, when an ODBC connection
is made, the *ODBCLOGIN cataloged subroutine will be run first. If the return value is 0, the server
process will terminate and return a login error. Otherwise, the connection will be allowed.

The ODBCLOGIN subroutine is optional for any connection. However, if the globally cataloged
*ODBCLOGIN subroutine exists on the server, it will be executed first on all connections.

The ODBCLOGIN subroutine has two parameters, as described below.

SUBROUTINE ODBCLOGIN(RTNVAL,USERNAME)

▪ RTNVAL - If RTNVAL is a nonzero value, the connection is allowed. If it is zero, the connection is
disallowed and an error message is returned.

▪ 2. USERNAME - The following sample subroutine demonstrates restricting ODBC connections to
only the root user.

SUBROUTINE ODBCLOGIN(RTNVAL,USERNAME)
 IF USERNAME="root" THEN
 RTNVAL=1
 END ELSE
 RTNVAL=0
 END
RETURN

U2 server environment setting
All U2 server processes requested from U2 clients will not be able to set up any environment based
on the user’s profile or any LOGIN script setting defined in the VOC file. All environment variable
settings are inherited from the parent unirpc daemon. The library path setting might be the most
important environment variable setting for some third-party products to work correctly. They must
be set correctly, before the unirpcd daemon is started. The server dynamic library environment
setting syntax is dependent on system platform. For an AIX system, it set to the LIBPATH environment
variable. All other UNIX systems are use the LD_LIBRARY_PATH environment variable.

For UniData users, the SETENV function can be used to set up the environment variable in the
UOLOGIN or ODBCLOGIN subroutine to work with their environment. Some system environment
variable settings. such as library path, UDTHOME, and UDTBIN are not allowed to be set in the
subroutine level. The UDTHOME environment variable setting is described in Chapter 3.

A UniData server supports the umask setting from UniData 8.1.0 and later using the SETENV() function
to change the UNIX umask value. This can be defined in the UOLOGIN subroutine. The optional
UOLOGIN subroutine is implemented on UniData 7.1 or later.

Following is a UOLOGIN sample subroutine for UniData. The following sample changes the UNIX
umask value to 002 in the current UniObjects session.

SUBROUTINE UOLOGIN(ALLOWED, PARAM.IN)
 ALLOWED=1
 RET=SETENV("umask","002")
END

UniVerse supports the similar ENV function to set the environment variables. The variables can be
defined in the UOLOGIN or ODBCLOGIN security subroutine.

Date format change for U2 native client

31

A UniVerse server supports the UMASK TCL command to change the UNIX umask value. This can
be defined in the UOLOGIN subroutine. The UOLOGIN subroutine is optional and is implemented on
UniVerse 10.1 and later.

Following is a UOLOGIN sample subroutine for UniVerse. The following sample changes the UNIX
umask value to 011 in the current UniObjects session.

SUBROUTINE UOLOGIN(ALLOWED, PARAM.IN)
 ALLOWED=1
 EXECUTE 'UMASK 011'
END

Date format change for U2 native client
In the international format, the day of the month appears first. In the United States format, the month
appears first. U2 users can use the DATE.FORMAT command to set or change the default date format.

Starting with UniVerse 11.3.1 and UniData 8.1.1, the UOLoginCommand file has been implemented
in the $UVHOME or $UDTHOME directory upon the startup of a UniObjects session. The
UOLoginCommand file now accepts one or multiple commands defined in the VOC file.

32

Chapter 7: U2 client connection debugging log
and settings

This chapter describes the U2 client debugging log and settings.

U2 ODBC client logging
The logging setting is defined in the Windows U2ODBC_LOG_PATH environment variable. The
u2odbc_<date_time>.log file will be created in the %U2ODBC_LOG_PATH% folder.

U2 UniObjects for Java client logging
The logging setting is implemented in the UniJava class. The setDebug method implements
full logging functionality for the UOJ driver (e.g. UniJava.setDebug(true)). It creates a new
uoj_trace.log file in the Java program folder.

U2 JDBC client logging
The logging setting is defined in the tracelevel variable in the JDBC URL. The trace level is from 0 to 5.

▪ 0 = No trace

▪ 1 = General error message

▪ 2 = data variable dump

▪ 3 = message passed to/from the server

▪ 4 = data shipped to/from the server

▪ 5 = methods entry and exist

Define the trace file for the log file name in the URL. For example:

String url =
"jdbc:rs.u2://localhost/demo?tracelevel=5;tracefile=ud_jdbc.trace;dbmstype=UNIDATA";
String url =
"jdbc:rs.u2://localhost/HS.SALES?tracelevel=5;tracefile=uv_jdbc.trace;dbmstype=
UNIVERSE";

UniObjects for .NET client logging
The UniObjects for .NET logging setting is UniObjects for .NET tracing defined in the app.config or
web.config file.

In the .NET Framework, there are four trace levels:

▪ 1 (error)

▪ 2 (warning)

▪ 3 (info)

▪ 4 (verbose)

U2 Toolkit for .NET client logging

33

If the Microsoft Visual Studio project does not contain a configuration file (app.config), then from
the Project menu, select Add > New Item. The myListener.log file will be created in the c:
\temp folder. The application configuration file is created and replaced by the following content:

<?xml version="1.0"?>
< configuration>
 <system.diagnostics>
 <sources>
 <!-- This section defines the logging configuration for My.Application.Log -->
 <source name="DefaultSource" switchName="DefaultSwitch">
 <listeners>
 <add name="myListener"/>
 </listeners>
 </source>
 </sources>
 <switches>
 <!-- add name="DefaultSwitch" value="Information" /-->
 <!-- Set value property of Arithmetic switch to one of the following: 1(error),
 2(warning), 3(info), 4(verbose) -->
 <add name="UniTraceSwitch" value="4" />
 </switches>
 <sharedListeners>
 <add name="myListener" type="System.Diagnostics.TextWriterTraceListener"
 initializeData="c:\temp\myListener.log" />
 </sharedListeners>
 <trace autoflush="true" indentsize="4">
 <listeners>
 <add name="myListener" />
 </listeners>
 </trace>
 </system.diagnostics>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0,Profile=Client"/>
 </startup>
< /configuration>

U2 Toolkit for .NET client logging
U2 Toolkit for .NET (U2NETDK) provides a standard tracing and logging facility to trace the execution
of U2NETDK code and to log the data in a user-specified destination. You can set the configuration for
tracing and logging using the application's environment variables. By default, tracing and logging are
turned off in U2NETDK.

To access the environment variables:

1. Navigate to Start > Control Panel > All Control Panel Items > System.
2. Click Advanced system settings and select the Advanced tab.
3. Select Environment Variables to add or edit the environment variables for your system:

▪ 1 (error)

▪ 2 (warning)

▪ 3 (info)

▪ 4 (verbose)

A U2NETDK application can select one of these four levels and specify a storage destination for the
output of tracing and logging. The UCINETTRACE environment variable is used to define the log file
folder. The UCINETTRACESWITCH environment variable is used to define the specific trace levels.

Chapter 7: U2 client connection debugging log and settings

34

Following is an example:

UCINETTRACE=c:\temp
 UCINETTRACESWITCH=4

In this example, tracing is turned on and it is set to the 4(verbose) level. The log file name is c:\temp
\ucinet_trace_<pid>.txt.

Tracing and logging in U2 Toolkit for .NET add-ins for
Visual Studio

The U2 Toolkit for .NET add-ins for Visual Studio provide a standard tracing and logging facility to
trace the execution of U2NETDK code, and log the data for both the installation process and in the
Visual Studio environment. You can set the configuration for tracing and logging using the system's
environment variables. By default, tracing and logging are turned off in U2NETDK.

Visual Studio trace files

To turn on the trace files option:

1. Navigate to Start > Control Panel > All Control Panel Items > System.
2. Click Advanced system settings and then select Advanced > Environment Variables.
3. In the System variables field, click New.
4. Enter U2ADDINS_LOG as the variable name and enter the location where the log file will be

stored as the variable value. For example, U2ADDINS_LOG=c:\temp.

35

Chapter 8: U2 SSL client connection debugging
log and settings

This chapter describes the U2 SSL client debugging log and settings.

UniData and UniVerse native SSL client connection
Server

When the U2 UniObjects server debug log is turned on, two log files are generated in the specified
log path based on the serverdebug file setting. For example, the UniVerse UniObjects server log
is uvcs.log_<pid>. It will generate another uvcs.log_ssl_<pid> on the UniVerse server
machine for the SSL connection.

Client

In the Windows environment, the InterCall client application can generate new SSL logging
information based on the clntrace.conf file that file must reside in the c:\temp folder.

Here is the sample setting in the clntrace.conf file to create the itc.log file in the c:\temp
folder.

ITC 9 c:\temp\itc.log

The second column is log level from 0 to 9. The third column is defined for the log file.

UniData and UniVerse U2 ODBC SSL client connection
Server

When the UniVerse ODBC server debug log is turn on, there are two generated log files in the UVTEMP
folder. For example, the UniVerse ODBC server log is UVUCIlog_<pid>. It will generate another
UVUCIlog_ssl_<pid> file on the UniVerse server machine for the SSL connection. There is only
one ODBC server log for UniData.

Client

In the Windows environment, the U2 ODBC client application can generate new SSL logging
information based on the clntrace.conf file that file must reside in the c:\temp folder.

Following is a sample setting in the clntrace.conf file to create the uci.log file in the c:\temp
folder.

UCI 9 c:\temp\uci.log

The second column is log level from 0 to 9. The third column is defined for the log file.

Chapter 8: U2 SSL client connection debugging log and settings

36

Turning on the U2 ODBC SSL client debugging log

In the U2 ODBC client 5.1.0 version, U2 users can set the U2SSL_DEBUG environment variable to 1. It
generates a u2ssl_debug.log file in the c:\temp folder that can help debug U2 ODBC SSL issues.

U2 ODBC SSL Client compatibility

The U2 ODBC SSL Client can work with an older U2 Server that only supports the SSLv3 or TLSv1
protocol, with modification.

The U2 ODBC version 5.1.0 client only supports TLSv1.1 and TLSv1.2 protocol by default. With older
UniVerse servers, such as 11.2.5, the user must add another SSLv3 or TLSv1 protocol option to HKLM
\SOFTWARE\Wow6432Node\Rocket Software\UniClient\SSL_PTOTOCOLS for 32-bit U2
ODBC and HKLM\SOFTWARE\Rocket Software\UniClient\SSL_PTOTOCOLS setting for 64-
bit U2 ODBC.

37

Chapter 9: Error Messaging
The following sections detail the error messaging within the U2 Client applications.

Database error codes
Value Symbol Meaning

1 IE_NLS_DEFAULT
14002 IE_ENOENT No such file or directory
14005 IE_EIO I/O error
14009 IE_EBADF Bad file number
14012 IE_ENOMEM No memory available
14013 IE_EACCES Permission denied
14022 IE_EINVAL Invalid argument
14023 IE_ENFILE File table overflow
14024 IE_EMFILE Too many open files
14028 IE_ENOSPC No space left on device
14551 IE_BW_NETUNREACH Network is unreachable. When you see this

error, you must quit and reopen the session.
22002 IE_BTS Buffer too small
22004 IE_LRR Last record already read
22005 IE_NFI File identifier given does not correspond to an

open file
22009 IE_STR FILEINFO result is a string
30001 IE_RNF Record not found
30002 IE_LCK File or record locked by another user
30086 IE_UFI FILEINFO request has not been implemented
30094 IE_BIL Bad ID length
30095 IE_FIFS File ID is incorrect for session
30096 IE_USC Unsupported server command
30097 IE_SELFAIL Select failed
30098 IE_LOCKINVALID Lock number provided is invalid
30099 IE_SEQOPENED The file was opened for sequential access and

you have attempted hashed access
30100 IE_HASHOPENED The file was opened for hashed access and you

have attempted sequential access
30101 IE_SEEKFAILED Seek command failed
30102 IE_DATUMERROR Internal datum error
30103 IE_INVALIDATKEY Invalid key used for GET/SET @variables
30104 IE_INVALIDFILEINFOKEY FILEINFO key out of range
30105 IE_UNABLETOLOADSUB Unable to load subroutine on host
30106 IE_BADNUMARGS Bad number of arguments for subroutine

(either too many or too few)
30107 IE_SUBERROR Subroutine failed to complete successfully

Chapter 9: Error Messaging

38

Value Symbol Meaning

30108 IE_ITYPEFTC I-type failed to complete correctly
30109 IE_ITYPEFAILEDTOLOAD I-type failed to load
30110 IE_ITYPENOTCOMPILED The I-type has not been compiled
30111 IE_BADTYPE It is not an I-type or the I-type is corrupt
30112 IE_INVALIDFILENAME Filename is null
30113 IE_WEOFFAILED ic_weofseq failed
30114 IE_EXECUTEISACTIVE An execute is currently active
30115 IE_EXECUTENOTACTIVE An execute is currently inactive
30116 IE_BADEXECUTESTATUS Internal execute error, execute has not

returned an expected status
30117 IE_INVALIDBLOCKSIZE Block size is invalid for call
30118 IE_BAD_CONTROL_CODE Bad trans control code
30119 IE_BAD_EXEC_CODE Execute did not send return codes back to

client correctly
30120 IE_BAD_TTY_DUP Failure to duplicate ttys
30124 IE_TX_ACTIVE Transaction is active
30125 IE_CANT_ACCESS_PF Cannot access part files
30126 IE_FAIL_TO_CANCEL Failed to cancel an execute
30127 IE_INVALID_INFO_KEY Bad key for ic_session_info
30128 IE_CREATE_FAILED The creation of a sequential file failed
30129 IE_DUPHANDLE_FAILED Failed to duplicate a pipe handle
31000 IE_NVR No VOC record
31001 IE_NPN No pathname in VOC record
33201 IE_PAR1 Bad parameter 1
33202 IE_PAR2 Bad parameter 2
33203 IE_PAR3 Bad parameter 3
33204 IE_PAR4 Bad parameter 4
33205 IE_PAR5 Bad parameter 5
33206 IE_PAR6 Bad parameter 6
33207 IE_PAR7 Bad parameter 7
33208 IE_PAR8 Bad parameter 8
33209 IE_PAR9 Bad parameter 9
33211 IE_BSLN Bad select list number
33212 IE_BPID Bad partfile ID
33213 IE_BAK Bad secondary index file
39000 IE_BAD_COMMAND Command not recognized by server
39101 IE_NODATA The server is not responding
39119 IE_AT_INPUT A program executed using ic_execute is

waiting for terminal input
39120 IE_SESSION_NOT_OPEN The session is not opened when an action is

attempted
39121 IE_UVEXPIRED The license has expired
39122 IE_CSVERSION Client or server is out of date; client/server

functions have been updated

Database error codes

39

Value Symbol Meaning

39123 IE_COMMSVERSION Client or server is out of date; comms support
has been updated

39124 E_BADSIG You are trying to communicate with the wrong
client or server

39125 IE_BADDIR The directory you are connecting to does not
exist or is not a database account

39126 IE_SERVERERR An error has occurred on the server while
trying to transmit an error code to the client

39127 IE_BAD_UVHOME Unable to get the correct path to the installed
database

39128 IE_INVALIDPATH Bad path found in UV.ACCOUNT file
39129 IE_INVALIDACCOUNT Account name given is not an account
39130 IE_BAD_UVACCOUNT_FILE UV.ACCOUNT file could not be found and/or

opened
39131 IE_FTA_NEW_ACCOUNT Failed to attach to the account specified
39133 IE_FTS_TERMINAL Failed to set up the terminal for server
39134 IE_ULR User limit has been reached
39135 IE_NO_NLS NLS is not enabled on the server
39200 IE_SR_CREATE_PIPE_FAIL Server failed to create the slave pipes
39201 IE_SR_SOCK_CON_FAIL Server failed to connect to socket
39202 IE_SR_GA_FAIL Slave failed to give server the Go Ahead

message
39203 IE_SR_MEMALLOC_FAIL Failed to allocate memory for the message

from the slave
39204 IE_SR_SLAVE_EXEC_FAIL The slave failed to start correctly
39205 IE_SR_PASS_TO_SLAVE_FAIL Failed to pass the message to the slave

correctly
39206 IE_SR_EXEC_ALLOC_FAIL Server failed to allocate the memory for the

execute buffer correctly
39207 IE_SR_SLAVE_READ_FAIL Failed to read from the slave correctly
39208 IE_SR_REPLY_WRITE_FAIL Failed to write the reply to the slave

(ic_inputreply)
39209 IE_SR_SIZE_READ_FAIL Failed to read the size of the message from the

slave
39210 IE_SR_SELECT_FAIL Server failed to select on input channel. When

you see this error, you must quit and reopen
the session.

39211 IE_SR_SELECT_TIMEOUT The select has timed out
80011 IE_BAD_LOGINNAME Login failed (user name or password invalid)
80019 IE_BAD_PASSWORD Password has expired
80036 IE_REM_AUTH_FAILED Unable to set remote authorization
80144 IE_ACCOUNT_EXPIRED The account has expired
80145 IE_PERM Account has been locked (AIX only)
80146 IE_EAGAIN User licenses are all in use
80147 IE_RUN_REMOTE_FAILED Unable to run as the given user
80148 IE_UPDATE_USER_FAILED Unable to update user details

Chapter 9: Error Messaging

40

Value Symbol Meaning

81001 UVRPC_BAD_CONNECTION Connection is bad. When you see this error,
you must quit and reopen the session.

81002 UVRPC_NO_CONNECTION Connection is down. When you see this error,
you must quit and reopen the session.

81003 UVRPC_NOT_INITED The UniRPC has not be initialized
81004 UVRPC_INVALID_ARG_TYPE Argument for message is not a valid type.

When you see this error, you must quit and
reopen the session.

81005 UVRPC_WRONG_VERSION UniRPC version mismatch
81006 UVRPC_WRONG_VERSION Packet message out of step. When you see this

error, you must quit and reopen the session.
81007 UVRPC_NO_MORE_

CONNECTIONS
No more connections available

81008 UVRPC_BAD_PARAMETER Bad parameter passed to the UniRPC. When
you see this error, you must quit and reopen
the session.

81009 UVRPC_FAILED UniRPC failed. When you see this error, you
must quit and reopen the session.

81010 UVRPC_ARG_COUNT Bad number of arguments for message
81011 UVRPC_UNKNOWN_HOST Bad host name, or host not responding
81012 UVRPC_FORK_FAILED UniRPC failed to fork service correctly
81013 UVRPC_CANT_OPEN_SERV_

FILE
Cannot find or open the unirpcsfervices
file

81014 UVRPC_CANT_FIND_SERVICE Unable to find the service in the
unirpcservices file

81015 UVRPC_TIMEOUT Connection has timed out. When you see this
error, you must quit and reopen the session
(start the UniRPC daemon or service on the
server).

81016 UVRPC_REFUSED Connection refused, unirpcd not running.
When you see this error, you must quit and
reopen the session.

81017 UVRPC_SOCKET_INIT_FAILED Failed to initialize network interface
81018 UVRPC_SERVICE_PAUSED The UniRPC service has been paused
81019 UVRPC_BAD_TRANSPORT An invalid transport type was used
81020 UVRPC_BAD_PIPE Invalid pipe handle
81021 UVRPC_PIPE_WRITE_ERROR Error writing to pipe
81022 UVRPC_PIPE_READ_ERROR Error reading from pipe

UniRPC error codes
Remote procedure call (UniRPC) error codes appear if there is a problem in the communications
between the client and the server, or if the server encounters one of several error conditions.

UniVerse SQL error codes

41

Error Code Meaning

81001 Connection closed, reason unspecified.
81002 On an SQLConnect call, this indicates that the service name specified by the

data source was not present on the server, the unirpcservices file was not
found, or the service name was not found in the unirpcservices file.

81003 The UniRPC interface has not been initialized.
81004 Error occurred while trying to store an argument in the transmission packet.
81005 The client and server are running incompatible versions of the UniRPC

protocol.
81006 A sequence number failure was detected on the connection.
81007 No more connections can be processed by the RPC interface.
81008 A bad UniRPC parameter was detected.
81009 An internal UniRPC error was detected.
81010 A mismatch in the number of arguments passed between the client and

server was detected.
81011 Unknown host. The host name or IP address specified in the data source is

not valid for the network.
81012 The UniRPC daemon (unirpcd) could not start the uvserver executable.
81013 Cannot open unirpcservices file.
81014 Cannot find service.
81015 The connection timed out.
81016 The connection was refused.
81018 The connection was refused.
81019 Invalid transport type.
81020 Invalid pipe handle.
81021 Error writing to pipe.
81022 Error reading from pipe.
81023 A connection specific error has occurred.
81024 This connection does not support multiplexing.
81025 This connection does not support encryption.
81026 This connection does not support compression.
81027 This type of encryption is not supported.
81028 This type of compression is not supported.
930098 The database server could not fork a helper process.

UniVerse SQL error codes
The following table shows the UniVerse SQL error codes and error message text associated with
certain SQLSTATE codes. Some texts are shown in abbreviated form.

Code Message

S0001 Table or view already exists
950458 UniVerse/SQL: Table “tablename” already exists in VOC.
950459 UniVerse/SQL: Table “tablename” is being created twice.
950528 UniVerse/SQL: View “viewname” already exists in VOC.

Chapter 9: Error Messaging

42

Code Message

950529 UniVerse/SQL: View “viewname” is being created twice.

S0002 Table or view not found
950311 UniVerse/SQL: “viewname” is a VIEW, not a BASE TABLE.
950313 UniVerse/SQL: “tablename” is a BASE TABLE, not a VIEW.
950390 UniVerse/SQL: Table “tablename” does not exist.
950455 UniVerse/SQL: View “viewname” does not exist.
950545 UniVerse/SQL: “name” is not a base table.
950596 UniVerse/SQL: “associationname” is an association; not valid for

REFERENCES.
950597 UniVerse/SQL: “associationname” is an association, not a VIEW.
950598 UniVerse/SQL: “associationname” is an association, not a base table or

view.
950599 UniVerse/SQL: “name” is not a base table; not valid for REFERENCES.

S0021 Column already exists
950416 UniVerse/SQL: Explicit column name “columnname” is not unique.
950570 UniVerse/SQL: Duplicate column name “columnname”.

S0022 Column not found
950418 UniVerse/SQL: Table constraint has an undefined column “columnname”.
950425 UniVerse/SQL: Column “columnname” not in table.
950428 UniVerse/SQL: Association key column not found.
950522 UniVerse/SQL: Invalid column “columnname” specified in constraint.
950523 UniVerse/SQL: Unknown column “columnname” specified in table

constraint.

21S01 Number of columns INSERTed doesn’t match number expected
950059 UniVerse/SQL: Number of columns inserted doesn’t match number

required.

21S02 Number of columns SELECTed doesn’t match number defined in

CREATE VIEW
950415 UniVerse/SQL: More explicit column names than columns selected.
950417 UniVerse/SQL: More columns selected than explicit column names.

22005 Error in assignment – Data type mismatch (ODBC)
950043 UniVerse/SQL: type1 and type2 types are incompatible in this operation.
950121 UniVerse/SQL: Column “columnname” data type does not match insert

value.
950122 UniVerse/SQL: Column “columnname” data type does not match update

value.
950169 UniVerse/SQL: Inconsistent data types in multivalued literal.
950617 UniVerse/SQL: Incorrect data type for literal DEFAULT.

UniVerse SQL error codes

43

Code Message

23000 Integrity constraint violation
923012 Integrity Constraint Violation, Index not active
923013 Integrity Constraint Violation, Index not UNIQUE
950136 UniVerse/SQL: constraintname Constraint Violation name on column

“columnname”.
950568 UniVerse/SQL: Can’t update existing rows with NULL default for NOT NULL

column.
950645 UniVerse/SQL: Unable to alter table “tablename”, Integrity constraint

violation.

40000 Transaction rolled back
040065 FATAL: The locks necessary for database operations at the current isolation

level (level) are not held by this process.
909046 Transaction aborted. Roll back attempted.
950604 Fatal error: ISOLATION level cannot be changed during a transaction.

40001 An SQL statement with NOWAIT encountered a conflicting lock
930157 UniVerse/SQL: Locking system failure in CursorOpen
950251 UniVerse/SQL: NOWAIT, Can’t lock record, conflict with another user.
950259 UniVerse/SQL: NOWAIT, Can’t lock file, conflict with another user.
950260 UniVerse/SQL: NOWAIT, Can’t lock record, conflict with user "user".
950261 UniVerse/SQL: NOWAIT, Can’t lock file, conflict with user "user".

42000 User lacks SQL or operating system permissions
001397 User does not have write privileges to current directory.
001422 Insufficient SQL permissions to read name.
001423 Insufficient SQL permissions to write name.
001424 Insufficient SQL permissions to delete name.
020142 Unable to open “filename” file.
036010 Permission Denied.
950072 UniVerse/SQL: Permission needed to delete records in table “tablename”.
950076 UniVerse/SQL: Permission needed to insert records in table “tablename”.
950078 UniVerse/SQL: Permission needed to update records in table “tablename”.
950131 UniVerse/SQL: Permission needed to update column “columnname” in table

“tablename”.
950303 UniVerse/SQL: No read/write permission for username, cannot create

schema.
950304 UniVerse/SQL: No rwx permission for name, cannot create schema.
950305 UniVerse/SQL: username does not have rwx permission for name, cannot

create schema.
950306 UniVerse/SQL: username does not have rw permission for name, cannot

create schema.
950338 UniVerse/SQL: username is not an SQL user.
950343 UniVerse/SQL: username does not have permission to drop schema.
950350 UniVerse/SQL: username does not have permission to create schemas.

Chapter 9: Error Messaging

44

Code Message

950352 UniVerse/SQL: You must be DBA to create a schema for another user.
950361 UniVerse/SQL: username does not have DBA privilege.
950362 UniVerse/SQL: Command aborted, you may not revoke your own privileges.
950365 UniVerse/SQL: No read/write permission for username, cannot create table.
950391 UniVerse/SQL: You do not have sufficient privileges to REVOKE on this file.
950392 UniVerse/SQL: You do not have sufficient privileges to REVOKE SELECT on

this file.
950393 UniVerse/SQL: You do not have sufficient privileges to REVOKE INSERT on

this file.
950394 UniVerse/SQL: You do not have sufficient privileges to REVOKE DELETE on

this file.
950395 UniVerse/SQL: You do not have sufficient privileges to REVOKE UPDATE on

this file.
950398 UniVerse/SQL: Command aborted. username is not an SQL user.
950405 UniVerse/SQL: You do not have sufficient privileges to GRANT on this file.
950406 UniVerse/SQL: You do not have sufficient privileges to GRANT SELECT on

this file.
950407 UniVerse/SQL: You do not have sufficient privileges to GRANT INSERT on

this file.
950408 UniVerse/SQL: You do not have sufficient privileges to GRANT DELETE on

this file.
950409 UniVerse/SQL: You do not have sufficient privileges to GRANT UPDATE on

this file.
950534 UniVerse/SQL: Unable to alter table “tablename”.
950538 UniVerse/SQL: You do not have sufficient privileges to REVOKE ALTER on

this file.
950539 UniVerse/SQL: You do not have sufficient privileges to REVOKE REFERENCES

on this file.
950540 UniVerse/SQL: You do not have sufficient privileges to GRANT ALTER on this

file.
950541 UniVerse/SQL: You do not have sufficient privileges to GRANT REFERENCES

on this file.
950546 UniVerse/SQL: Permission needed to alter table tablename.
950548 UniVerse/SQL: Write permission needed to create or delete index.
950563 UniVerse/SQL: You don’t have enough privileges to DROP “tablename”.
950588 UniVerse/SQL: Cannot write to tablename.
950590 UniVerse/SQL: Unable to open tablename.
950607 UniVerse/SQL: Unable to create REFERENCES on table tablename.
950609 UniVerse/SQL: Permission needed to create REFERENCES to table

tablename.

U2 ODBC error codes
The following table shows the U2 ODBC error codes and error message text.

U2 ODBC error codes

45

Code Message

ODB930000 Successful completion
ODB930001 Disconnect failure
ODB930002 Connection already established
ODB930003 Connection is not established
ODB930004 Invalid parameter length
ODB930005 Unsupported data type
ODB930006 The data source is not in the configuration
ODB930007 Invalid cursor state
ODB930008 Character string truncation
ODB930009 Numeric value out of range
ODB930010 Not all parameter markers have been resolved
ODB930011 Function call is illegal at this point
ODB930012 Data has been truncated
ODB930013 An invalid column number was specified
ODB930014 Unsupported function
ODB930015 Invalid transaction code
ODB930016 An invalid data type has been requested
ODB930017 Disconnect with an active transaction is illegal
ODB930018 An illegal network type was specified.
ODB930019 There is no configuration file, or an error was found in the file
ODB930020 An illegal configuration option was found
ODB930021 Connect failure
ODB930022 An illegal connect parameter was detected
ODB930023 A SequeLink middleware error was detected
ODB930024 An invalid cursor name was specified
ODB930025 A duplicate cursor name was specified
ODB930026 No cursor name was specified
ODB930027 An error occurred at the data source
ODB930028 An illegal SQL data type was supplied
ODB930029 A 0 or empty pointer was specified
ODB930030 An unsupported attribute was specified
ODB930031 An illegal parameter number was specified
ODB930032 An unsupported SQL data type was encountered
ODB930033 An illegal option value was specified
ODB930034 Fractional truncation
ODB930035 An unknown DBMS type has been specified
ODB930036 An illegal option value was specified
ODB930037 Non-numeric data was found where numeric required
ODB930038 Transaction commit failure
ODB930040 Failed opening SequeLink cursor
ODB930041 Illegal date/time value
ODB930051 Row exceeds maximum allowable width.
ODB930053 Information type out of range.

Chapter 9: Error Messaging

46

Code Message

ODB930054 Only a single environment variable may be allocated.
ODB930055 Multi-valued data present. Single result returned.
ODB930056 Memory allocation failure.
ODB930057 Improper MAPERROR option.
ODB930058 Improper SQLTYPE option.
ODB930059 Error in Remote Procedure Call interface.
ODB930060 Connections to non-uniVerse data sources is not allowed.
ODB930061 Nested transactional operations to non-uniVerse databases are not

permitted.
ODB930062 Communications link failed during operation.
ODB930063 Remote user id is required.
ODB930064 Remote password is required.
ODB930065 UniVerse user limit on server has been reached, try again later.
ODB930066 The uniVerse on the server has expired.
ODB930067 SQLGetData on column bound as multi-valued is illegal.
ODB930068 SQLBindMvCol/SQLBindMvParam illegal on 1NF connection.
ODB930069 Function type out of range.
ODB930070 Multi-valued parameter binding for CALL not allowed.
ODB930071 UCI connections to non UniVerse databases is not allowed.
ODB930072 Driver does not support this function.
ODB930073 Invalid string or buffer length.
ODB930074 OUTPUT parameter markers are only valid with procedure calls.
ODB930075 Parameter marker text size exceeds allocated space.
ODB930076 Operation invalid at this time.
ODB930077 NLS is not enabled.
ODB930078 NLS item not found.
ODB930079 NLS locale category entry is invalid.
ODB930080 NLS locale support is not enabled.
ODB930081 NLS locale name is not loaded into shared memory.
ODB930082 NLS locale category number is invalid.
ODB930083 NLS multivalued locale array is incomplete.
ODB930084 NLS internal error.
ODB930086 Unable to get UCI configuration file from Registry.
ODB930087 Unable to access specified UCI configuration file.
ODB930088 Illegal value for fetch direction.
ODB930089 Illegal Account name specified.

	Contents
	Chapter 1: Introduction
	UCI (UniVerse only)
	InterCall
	UniObjects for Java
	JDBC Driver for UniVerse and UniData
	Visual Schema Generator (UniData only)
	U2 ODBC
	UniObjects for .NET
	U2 Toolkit for .NET
	U2 Client build information

	Chapter 2: Maintaining the UniRPC
	System requirements
	How the UniRPC works
	Maintaining the UniRPC
	UniRPC maintenance on UNIX UniVerse systems
	Defining the UniRPC port number (UNIX UniVerse Only)
	Maintaining the hosts file (UniVerse Only)
	Adding a node
	Modifying a node
	Removing a node

	Starting the UniRPC on Windows platforms
	From the Control Panel
	From the UniVerse Control Panel
	At the MS-DOS prompt

	Stopping the UniRPC on Windows platforms
	From the Control Panel
	From the UniVerse Control Panel
	At the MS-DOS prompt

	Starting the UniRPC daemon on UNIX UniVerse systems
	Starting the UniRPC daemon on UNIX UniData systems
	Stopping the UniRPC daemon on UNIX UniVerse systems
	Stopping the UniRPC daemon on UNIX UniData systems

	UniRPC maintenance on U2 servers

	About the unirpcservices file
	UniVerse systems
	UniData systems

	UNIX UniRPC daemon debugging log
	Windows UniRPC service debugging log

	Chapter 3: Accessing UniData Accounts
	Running concurrent UniData versions
	Running UCI, UniData ODBC, or UniOLEDB concurrently
	Running InterCall, UniObjects, or UniObjects for Java concurrently
	Tracing events for U2 ODBC, JDBC, or U2 Toolkit UCI connection server
	Turning on the UniObjects server, UOJ, or U2 Toolkit native connection log based on specific service name

	Chapter 4: Accessing UniVerse Accounts
	Tracing events for U2 ODBC, JDBC, or U2 Toolkit UCI connection server
	Turning on the UniData UniObjects server, UOJ, or U2 Toolkit native connection log based on specific service name
	Turning on the UniVerse UniObjects server, UOJ, or U2 Toolkit native connection log based on specific service name

	Chapter 5: Device licensing
	Licensing modes
	Session licensing
	Device licensing

	Why do I need device licensing?
	Device licensing requirements

	Connection types
	Direct connections
	Two-tier connections
	Multiple-tier connections
	Using device subkeys

	Chapter 6: U2 server security control subroutine and U2 environment settings
	UniData and UniVerse native client connection control
	UniData and UniVerse ODBC client connection control
	U2 server environment setting
	Date format change for U2 native client

	Chapter 7: U2 client connection debugging log and settings
	U2 ODBC client logging
	U2 UniObjects for Java client logging
	U2 JDBC client logging
	UniObjects for .NET client logging
	U2 Toolkit for .NET client logging
	Tracing and logging in U2 Toolkit for .NET add-ins for Visual Studio
	Visual Studio trace files

	Chapter 8: U2 SSL client connection debugging log and settings
	UniData and UniVerse native SSL client connection
	UniData and UniVerse U2 ODBC SSL client connection
	Turning on the U2 ODBC SSL client debugging log
	U2 ODBC SSL Client compatibility

	Chapter 9: Error Messaging
	Database error codes
	UniRPC error codes
	UniVerse SQL error codes
	U2 ODBC error codes

